
...

ianonym.com servers
or partner servers that host
a tag to retrieve the js code

... Enter server url

Get javascript code Enter target URL here

1

11
3

2

Browse here { {USER INTERFACE

OP (js code)Page loading

http(s)://www.example.com

WebSockets
and

SOCKS proxy

The OP transforms http(s)://www.example.com into https://random_string.com, opens
circuits in the anonymizer network, chooses a circuit and informs the OR of the associa-
tion (circuit/random_string.com).
The OP asks the browser to open https://random_string.com

The OR receives the instructions to load https://random_string.com from
the browser and sends it to the OP. The OP translates it to example.com
and sends the correct requests to the destination site via the OR and the
anonymizer network

Note1: https://www.random_string.com (not http://random_string.com,
even if the initial url was http://www.example.com (https option). See
below

Note2: the OP has previously opened a TLS connection with the browser
via the OR so subsequent messages will also be encrypted on the socks
interface. The browser displays a security warning during the handshake
since the OP certi�cate may not be valid

Note3: if example.com is called up using https, the OP sets up a second TLS
connection with the target server via the anonymizer network

Note4: in this process the OP checks all requests to hosts outside the
example.com domain (analytics, ads, trackers, etc.) both for security
reasons and to ensure that the outside tra�c does not reveal the destina-
tion. The browser only sees the fake domain (to which it associates cookies,
history, cache). This signi�cantly reduces the risk of attacks from Evil4 (js,
css, etc.). Also, js namespaces are completely separate (Evil4 cannot attack
Anonym’s JS code) and the OP includes in the page whatever is needed to
make it secure (control scripts, iframes, etc.)

Encrypted if https

Target site (example.com)

The Response is received by the OP via the anonymizer network which
sends it to the browser via the OR and previously opened TLS connection.
All urls are changed to https://random_string.com/xxx, then all subse-
quent resources loading will always be managed by the OP

1

2

3

} Anonymizer
network

TLS
encrypted

Websocket TLS encrypted + anonymizer network encryption + TLS encrypted (if https option)Evil 1

Evil 3

Evil 2

The OP is the only one that knows the destination site (example.com) and the
only one that can decrypt the messages received from the site (even if https is
used). It can then modify them before sending them to the browser (change
headers, change urls to fake domain, add “tame” script, etc.)

The messages between the OR and the browser are TLS encrypted (even if https is
not used)

The OR and Evil1 only see random_string.com. They cannot decrypt the TLS
encrypted messages relayed from the OP to the browser and can therefore not
know what the browser and the site are talking about.

Evil1 could try to do a man in the middle attack (since the OP certi�cates may not
be valid) and see the messages between the browser and the OP. However, the
page loader and the OP can communicate so they would need to check that the
certi�cate used is the one issued by the OP (Web specs evolution? Look at how to
do this)

Evil2 could try to do a man in the middle attack (wss) but it will only see the
messages encrypted by the anonymizer network or TLS.

Evil3 of course knows the destination but the messages are TLS encrypted if https
was used initially so Evil3 cannot understand them. Otherwise, Evil3 can see the
messages but it is di�cult to correlate with the initial sender.

Evil 4

OR

OR

OR

iAnonym OR

